<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>PREREQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>CPSC 432</td>
<td>INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON</td>
<td>CPSC 432</td>
</tr>
<tr>
<td>SCIENCE</td>
<td></td>
<td>DEPENDENCY RESOLUTION.</td>
<td></td>
</tr>
</tbody>
</table>
UNIVERSITÀ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE E TECNOLOGIE
10:15 Welcome
10:30 The scientific role of CS
11:00 The master in CS
11:30 Bureaucracy stuff
11:45 From student to student
11:50 Sport @unimi with CUS
Benvenuti in Statale!

A short tour of the University and a view on computer science (master degree version)
Benvenuti in Statale!

http://orientamento.di.unimi.it/index.php/iniziative/bday
What do you do at a University?

- A community of learners who study together

Università degli Studi di Milano

Facoltà di Scienze e Tecnologie

Dipartimento di Informatica

University of Milan

Division of Science and Technology

Computer Science Department
University funding

- Italian Universities have been for long largely under-funded (~1.4% of GDP invested in R&D vs. 2-3% in EU/US/JP/…)

- Taxes paid by students only cover a small part of actual costs (<20% total funding, as imposed by law)

- University is thus paid for by people not attending it...

- Thus you have a **big responsibility**: complete your studies and make the most of what you learn!
Teaching organization

- Academic year organized in semesters, several courses per semester (frontal lectures / labs)
- Attending is not mandatory, although strongly advised
- 1 CFU = 25 (student) work hours:
 - 8 classroom + 17 individual study (frontal lessons)
 - 12 lab + 13 individual study (labs)
- Thus attending lectures is not sufficient
- Studying is a full-time activity
MSc is not BSc

- More freedom (check on «Manifesto degli Studi»)
 - a heavily customizable curriculum
 - specific specializations
- As soon as possible, plan your thesis’ work
 - more demanding, thus more challenging
- Studying abroad is extremely meaningful
- Possible collaborations as TA
 - «CS 101» for other bachelor degrees (prof. Montanelli)
 - course for BSc in computer science (involved teachers)
Exams

• Each course requires one or more exams
 – written (sometimes substituted by partials)
 – oral
 – project

• Exams are planned at specific dates (appelli): Jan Feb Jun Jul Sep

• Six possibilities (for each course) per year: don’t just try them! Moreover, signing up without actually showing up might pose logistic problems
Some pointers

- Teaching office / Ufficio per la didattica
 - via Celoria 18 (ground floor)

- Timetable: http://easystaff.divsi.unimi.it/PortaleStudenti/

- Web
 - http://www.di.unimi.it
 (CS department / Dipartimento)
 (Teaching division / Collegio didattico)

- Student’s guide
 https://www.unimi.it/sites/default/files/2020-09/Welcome_ENG_Web_2020_2021_0.pdf
Important places

• Via Celoria 18: CS department + classrooms
Important places

- Settore didattico and via Golgi: classrooms
Important places

• Via Venezian 15 (didatteca): classrooms
“Places” for the forthcoming year?

- All lectures of the fall term take place remotely
- Mostly in sync, but available offline
- Teaching material: Web pages of the courses
- Platforms
 - video lectures: zoom / teams
 - teaching material: ariel / teachers’ Web pages
 - (however, expect a little variability…)
- Spring term: too soon to say anything
Student/teacher communication

• Check beforehand if it is more appropriate to ask to someone else (e.g., teaching office) and if the info is already published somewhere

• Vis à vis (during classes or at office hours)

• Using e-mail, via your address
 name.surname@studenti.unimi.it
 - be clear, concise, and specify a subject
 - write clearly your name, surname and course
 - send only one message
Some tips...

- Learn how to manage time
- Find your way to approach learning
- Learn how to work in groups and individually, attend labs, discuss with other students and with TAs
- Get informed about teaching opportunities (elective courses, seminars, additional lectures) and learn how to develop practical skills autonomously
A look at Computing
Concept map

HARDWARE
how digital computers are done
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- system
- application
Concept map

HARDWARE
- how digital computers are done

SOFTWARE
- system
- application

NETWORK and PROTOCOLS
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- system
- application

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- system
- application

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
Description of an algorithm in a language suitable to be executed by a machine
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- system
- application

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
Description of an algorithm in a language suitable to be executed by a machine

PROCESS
Instance of an executed program
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- system
- application

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
Description of an algorithm in a language suitable to be executed by a machine

PROCESS
Instance of an executed program

MATHEMATICAL TOOLS
- describing and modeling objects
- analyzing, describing, forecasting the behaviour of a system
Concept map

- **HARDWARE**
 - how digital computers are done

- **SOFTWARE**
 - system
 - application

- **NETWORK and PROTOCOLS**

- **ALGORITHM**
 - Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

- **PROGRAM**
 - Description of an algorithm in a language suitable to be executed by a machine

- **PROCESS**
 - Instance of an executed program

- **MATHEMATICAL TOOLS**
 - describing and modeling objects
 - analyzing, describing, forecasting the behaviour of a system

- **SIGNALS**

- **DATA**

- **INFORMATION**