<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>PREREQ'S</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER SCIENCE</td>
<td>CPSC 432</td>
<td>INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION</td>
<td>CPSC 432</td>
</tr>
</tbody>
</table>
Benvenuti in Statale!

A short tour of the University and a view on computer science (master degree version)
Benvenuti in Statale!
What do you do at a University?

- A community of learners who study together
University funding

• Italian Universities have been for long largely under-funded (~1,2% of GDP invested in R&S vs. 2-3% in EU/US/JP/…)

• Taxes paid by students only cover a small part of actual costs (<20% total funding, as imposed by law)

• University is thus paid for by people not attending it...

• thus you have a big responsibility: complete your studies and make the most of what you learn!
Teaching organization

- Academic year organized in semesters, several courses per semester (frontal lectures / labs)
- Attending is not mandatory, although strongly advised
- 1 CFU = 25 student workhours:
 - 8 classroom + 17 individual study (frontal lesson)
 - 12 lab + 13 individual study (lab)
- Thus attending lectures is not sufficient
- Studying is a full-time activity
MSc is not BSc

- More freedom (check on «Manifesto degli Studi»)
 - a heavily customizable curriculum
 - specific specializations
- As soon as possible, plan your thesis’ work
 - more demanding, thus more challenging
- Studying abroad is extremely meaningful
- Possible collaborations as TA
 - «CS 101» for other bachelor degrees (prof. Montanelli)
 - course for BSc in computer science (involved teachers)
Exams

- Each course requires one or more exams
 - written (sometimes substituted by partials)
 - oral
 - project / lab
- Exams are planned at specific dates (appelli): Jan Feb Jun Jul Sep
- Six possibilities (for each course) per year: don’t just try them! Moreover, signing up without actually showing up might pose logistic problems
Some pointers

- Teaching office / Ufficio per la didattica
 - via Celoria 18 (ground floor)

- Timetable: http://easystaff.divsi.unimi.it/PortaleStudenti/

- Web
 - http://www.di.unimi.it
 (CS department / Dipartimento)
 - http://www.ccdinfmi.unimi.it
 (Teaching division / Collegio didattico)

- Student’s guide

https://www.unimi.it/sites/default/files/2019-08/welcome%20ING.pdf
Important places

• Via Celoria 18: CS department + classrooms
Important places

- Settore didattico: classrooms
Important places

- Via Venezian 15 (didatteca): classrooms
Student/teacher communication

• Check beforehand if it is more appropriate to ask to someone else (e.g., teaching office) and if the info is already published somewhere
• Vis à vis (during classes or at office hours)
• Using e-mail, via your address
 name.surname@studenti.unimi.it
 - be clear, concise, and specify a subject
 - write clearly your name, surname and course
 - send only one message
Some tips...

- Learn how to manage time
- Find your way to approach learning
- Learn how to work in groups and individually, attend labs, discuss with other students and with TAs
- Get informed about teaching opportunities (elective courses, seminars, additional lectures) and learn how to develop practical skills autonomously
A look at CS
Concept map

HARDWARE
how digital computers are done
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- application
- system
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- application
- system

NETWORK and PROTOCOLS
Concept map

HARDWARE
- how digital computers are done

SOFTWARE
- application
- system

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem
Concept map

HARDWARE
- how digital computers are done

SOFTWARE
- application
- system

NETWORK and PROTOCOLS

ALGORITHM
- Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
- Description of an algorithm in a language suitable to be executed by a machine
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- application
- system

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
Description of an algorithm in a language suitable to be executed by a machine

PROCESS
Instance of an executed program
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- application
- system

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
Description of an algorithm in a language suitable to be executed by a machine

PROCESS
Instance of an executed program

MATHEMATICAL TOOLS
- describing and modeling objects
- analyzing, describing, forecasting the behaviour of a system
Concept map

HARDWARE
how digital computers are done

SOFTWARE
- application
- system

NETWORK and PROTOCOLS

ALGORITHM
Procedure made up by a finite sequence of elementary steps leading to the solution of a problem

PROGRAM
Description of an algorithm in a language suitable to be executed by a machine

PROCESS
Instance of an executed program

MATHEMATICAL TOOLS
- describing and modeling objects
- analyzing, describing, forecasting the behaviour of a system

SIGNALS

DATA

INFORMATION